The Impact of Technology Improvement on Indonesia Manufacturing Industry Productivity

Authors

DOI:

https://doi.org/10.56707/ijoerar.v2i3.75

Keywords:

Total factor productivity growth, Technology improvement, Stochastic frontier analysis

Abstract

Objective: The technology is main component in innovation, especially on industry manufacturing to increases production capability. The aim of this study is to examine the total factor productivity growth (TFPg) and its component in Indonesian industry manufacturing based on technology improvement. Method: The stochastic frontier analyses are used to calculate (TFPg). This study attempts to analyses the variation in the TFPg across year, and technology adaption. Results:  The first is the analysis of year-wise comparison, show that experiences negative TFP growth or the average TFP score of current period degrades down from average score in the prior period. Second is the analysis based on technology adaption, show that the degression of productivities are mainly driven by technological regress indicating that the majority firms need innovation in technology utilized in the production process. The medium-high technology on industry manufacturing has highest score of TFP, means technology improvement support on firm productivity. Novelty: The lack of analysis regarding TFPg using a technology adaptation approach makes it a challenge to dig deeper.

Author Biographies

Prayudi Setiawan Prabowo, Universitas Negeri Surabaya

prepare a draft article

Wenny Restikasari, Universitas Negeri Surabaya

drafting article and translator

Norashida Othman, Universiti Teknologi MARA

Drafting article

Ruth Eviana Hutabarat, Universitas Negeri Surabaya

Collecting data

Mohammad Wasil, Universitas Negeri Surabaya

Running data

References

Aigner, D., Lovell, C. A. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), 21–37. https://doi.org/10.1016/0304-4076(77)90052-5

Ariyani, L., Hermawati, W., Fizzanty, T., Pitaloka, A., & Budiansyah, A. (2021). Industry 4.0 and technology adoption in the garment industry. Procedia Business and Financial Technology, 1. https://doi.org/10.47494/pbft.2021.1.13

Arora, N., & Lohani, P. (2017). Does foreign direct investment spillover total factor productivity growth ? A study of Indian drugs and pharmaceutical industry. Benchmarking: An International Journal, 24(7), 1937–1955. https://doi.org/10.1108/BIJ-09-2016-0148

Astanto, T., Suyanto, S., Santoso, H., & Salim, R. (2022). Technical inefficiency in nine clusters of indonesian manufacturing firms and its determinants: stochastic frontier analysis. Jurnal Ekonomi Pembangunan Kajian Masalah Ekonomi Dan Pembangunan, 23(2), 241-253. https://doi.org/10.23917/jep.v23i2.18113

Basri, R., Karimi, S., & Zulkifli, Z. (2020). Export orientation of indonesia’s manufacturing industry. Jurnal Perspektif Pembiayaan Dan Pembangunan Daerah, 8(2), 111-124. https://doi.org/10.22437/ppd.v8i2.8817

Battese, G. E., & Coelli, T. J. (1992). Frontier production functions, technical efficiency and panel data: With application to paddy farmers in India. Journal of Productivity Analysis, 3(1–2), 153–169. https://doi.org/10.1007/BF00158774

Battese, George E, & Coelli, T. J. (1988). Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. Journal of Econometrics, 38(3), 387–399. https://doi.org/10.1016/0304-4076(88)90053-X

Battese, George E, & Coelli, T. J. (1995). A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data. Empirical Economics, 20, 325–332.

Camino-Mogro, S. (2022). TFP determinants in the manufacturing sector: the case of Ecuadorian firms. Applied Economic Analysis, 30(89), 92-113.

Chang, C. (2020). Green open innovation activities and green co-innovation performance in taiwan’s manufacturing sector. International Journal of Environmental Research and Public Health, 17(18), 6677. https://doi.org/10.3390/ijerph17186677

Faruq, H. and Yi, D. (2010). The determinants of technical efficiency of manufacturing firms in ghana. Global Economy Journal, 10(3), 1850205. https://doi.org/10.2202/1524-5861.1646

Ghobakhloo, M. and Azar, A. (2018). Business excellence via advanced manufacturing technology and lean-agile manufacturing. Journal of Manufacturing Technology Management, 29(1), 2-24. https://doi.org/10.1108/jmtm-03-2017-0049

Ikhsan, M. (2007). Total factor productivity growth in indonesian manufacturing: a stochastic frontier approach. Global Economic Review, 36(4), 321-342. https://doi.org/10.1080/12265080701694488

Irfan, F., Bura, R., & Yansyah, H. (2020). Development strategic of simulator technology 4.5 generation fighter aircraft for supporting national defense system. Jurnal Pertahanan Media Informasi TTG Kajian & Strategi Pertahanan Yang Mengedepankan Identity Nasionalism & Integrity, 6(3), 357. https://doi.org/10.33172/jp.v6i3.834

Kaur, K. and Mehta, S. (2023). Modes of technology accumulation, total factor productivity and indian manufacturing sector: firm-level analysis. Journal of South Asian Development, 18(1), 7-43. https://doi.org/10.1177/09731741221142351

Kumbhakar, S. C. (1990). Production frontiers, panel data, and time-varying technical inefficiency. Journal of Econometrics, 46(1–2), 201–211. https://doi.org/10.1016/0304-4076(90)90055-X

Lee, Y. H., & Schmidt, P. (1993). A production frontier model with flexible temporal variation in technical efficiency. In The Measurement of Productive Efficiency: echniques and Applications, ed. H. O. Fried, C. A. K. Lovell, and S. S. Schmidt (pp. 237–255).

Malini, H., Natalia, D., & Giriati, G. (2021). Corporate governance and company value: a manufacturing industry case study. Inobis Jurnal Inovasi Bisnis Dan Manajemen Indonesia, 4(4), 450-461. https://doi.org/10.31842/jurnalinobis.v4i4.196

Jondrow, J., Lovell, C. K., Materov, I. S., & Schmidt, P. (1982). On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of econometrics, 19(2-3), 233-238.

Parameswaran, M. (2009). International trade, r&d spillovers and productivity: evidence from indian manufacturing industry. The Journal of Development Studies, 45(8), 1249-1266. https://doi.org/10.1080/00220380902862911

Putri, I. A. J., Budiyanto, B., Triyonowati, T., & Ilham, I. (2023). Growth, Intellectual Capital, Financial Performance And Firm Value: Evidence From Indonesia Automotive Firms. International Journal of Science, Technology & Management, 4(1), 139-146.

Ratnanta, S., Anggoro, P., Fergiawan, P., Jamari, J., & Bayuseno, A. (2021). Optimization of the toolpath strategy for the master ceramic jewelry mold pattern using the rhinoceros software and router cnc machine.. https://doi.org/10.2991/aer.k.210810.066

Rostiana, E., Djulius, H., & Sudarjah, G. M. (2022). Total Factor Productivity Calculation of the Indonesian Micro and Small Scale Manufacturing Industry. Ekuilibrium: Jurnal Ilmiah Bidang Ilmu Ekonomi, 17(1), 54-63.

Sari, D. (2019). The potential horizontal and vertical spillovers from foreign direct investment on indonesian manufacturing industries. Economic Papers a Journal of Applied Economics and Policy, 38(4), 299-310. https://doi.org/10.1111/1759-3441.12264

Schmidt, P., & Sickles, R. C. (1984). Linked references are available on JSTOR for this article. Journal of Business and Economic Statistics, 2(4), 367–374.

Setyawan, D. (2020). Energy efficiency in indonesia’s manufacturing industry: a perspective from log mean divisia index decomposition analysis. Sustainable Environment Research, 30(1). https://doi.org/10.1186/s42834-020-00053-9

Shim, S. and Park, K. (2016). Technology for production scheduling of jobs for open innovation and sustainability with fixed processing property on parallel machines. Sustainability, 8(9), 904. https://doi.org/10.3390/su8090904

Sugiharti, L., Purwono, R., Primanthi, M., & Esquivias, M. (2019). Indonesia industrial productivity growth: evidence of re-industrialization or de-industrialization?. Periodica Polytechnica Social and Management Sciences, 27(2), 108-118. https://doi.org/10.3311/ppso.12489

Sule, O. and Oshi, J. (2022). Inventory management and competitive advantage of contemporary manufacturing firms in nigeria. Journal La Bisecoman, 2(6), 47-53. https://doi.org/10.37899/journallabisecoman.v2i6.557

Syreyshchikova, N., Pimenov, D., Yaroslavova, E., Gupta, M., Sharma, S., & Giasin, K. (2021). Product quality planning in laser metal processing based on open innovation using quality function deployment. Journal of Open Innovation Technology Market and Complexity, 7(4), 240. https://doi.org/10.3390/joitmc7040240

Tang, M., Xu, P., Llerena, P., & Jahanshahi, A. (2019). The impact of the openness of firms’ external search strategies on exploratory innovation and exploitative innovation. Sustainability, 11(18), 4858. https://doi.org/10.3390/su11184858

Wahyuni, K., Monika, A., Kurniawan, R., Caraka, R., & Nugroho, Y. (2022). The effect of spillover foreign direct investment on labor productivity in indonesia. Jurnal Ekonomi Pembangunan.211-228. https://doi.org/10.23917/jep.v23i2.18060

Wang, H., & Ho, C. (2009). Estimating fixed-effect panel stochastic frontier models by model transformation. MPRA Paper No. 31081.

Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing smart factory of industrie 4.0: an outlook. International Journal of Distributed Sensor Networks, 12(1), 3159805. https://doi.org/10.1155/2016/3159805

Yang, X. and Wang, S. (2016). Venture capital and the tfp growth of chinese manufacturing firms. https://doi.org/10.2991/icmia-16.2016.7

Downloads

Published

2024-09-24

How to Cite

Prabowo, P. S., Restikasari, W., Othman, N., Hutabarat, R. E., & Wasil, M. (2024). The Impact of Technology Improvement on Indonesia Manufacturing Industry Productivity. International Journal of Emerging Research and Review, 2(3), 000075. https://doi.org/10.56707/ijoerar.v2i3.75

Issue

Section

Articles