Problem Based Learning Models in Senior High Schools: A Literature Review on Learning Physics

Rachmadaniz Audrey Kinasis1, Rosikhotul Ilmi1, Nindy Carmelia Burnama1, Anisa Rizky1, Binar Kurnia Prahani1*, Rizki Fitri Rahima Uulaa2
1Universitas Negeri Surabaya, Surabaya, Indonesia
2National Taiwan University of Science and Technology, Taiwan, Province of China

ABSTRACT

Objective: One of the facilities and infrastructure to improve the quality of human resources in education. The challenge must be to create the nation’s next generation who can solve a problem, can think creatively, can think critically and make decisions. The way to improve student’s abilities is to use an interactive and not monotonous learning model to make physics learning more effective. The purpose of the research is to investigate the benefits of the PBL learning model in senior high school physics instruction and the influence it has on those subjects. Method: In addition, the research method used examines the literature and collects data from 15 articles from various journals. These both national and international scientific journals that are aligned with the problem-based learning model, which is then analyzed descriptively and qualitatively. Results: The conclusions that can be drawn through this research is that a problem-based learning model is very effective for applying to physics subjects in high school. Novelty: Increased student learning outcomes critical thinking, problem-solving skills and understanding of physics concepts evidence this.

INTRODUCTION

The facilities and infrastructure needed to improve the quality of human resources in the field of education are crucial. In this era, the rapid development of science and technology requires high adaptation to remain relevant. The Republic of Indonesia Law No. 20 of 2003 concerning the National Education System states that the aim of education is to shape students who are dedicated, have good personality, possess positive character, and have knowledge that is beneficial to the homeland, nation, and religion.

There are various challenges in education today, one of which is to create the next generation capable of problem-solving, critical and creative thinking, decision-making, expressing opinions, and working effectively both individually and in groups (Simanjuntak, 2019). According to the Ministry of Education and Culture in 2017, the current learning emphasizes students' abilities to find solutions, formulate problems, analyze, and collaborate in problem-solving. Therefore, communication and collaboration are crucial in improving the quality of education in Indonesia.

According to various sources, the current learning process predominantly relies on conventional teacher-centered methods, which limit student involvement and hinder the development of collaborative and communicative skills (Nurhayati, 2019). Continuously employing these methods in teaching leads to less conducive learning activities and inadequate student learning outcomes. It is necessary to diversify the presentation of materials to facilitate students' comprehension of the lessons. Hence, innovative approaches and models of instruction are required to enhance students' abilities and improve learning outcomes.

https://ijoerar.net/index.php/ijoerar
Physics is identified as a subject that poses challenges for high school students in terms of practical application in everyday life (Ahmad, 2020). It plays a crucial role in the realm of science and technology. By studying physics, students can develop their intellectual capabilities and problem-solving skills. Many students struggle to grasp physics concepts and tend to rely on memorizing formulas without comprehending their physical significance. Additionally, some students hesitate to seek assistance from teachers when they encounter difficulties with the material. The effectiveness of teaching and learning is measured by students' academic performance and improvements in their abilities (Suliyanah, 2021). Thus, student interest learning is the main factor affecting their learning outcomes.

Many methods and learning models need to be applied to improve student learning outcomes in physics learning in high school. One of which is the Problem-Based Learning Model. This learning model can improve student learning experiences that are realistic and relevant for students in dealing with fundamental problems in life. This approach fosters critical thinking, problem-solving abilities, and intellectual skills, as students collaborate to solve physics-related problems. Hence, the objective of this study is to analyze the impact of implementing the PBL model in physics education and assess its benefits in high school settings. In addition, the purpose of this study is to further examine the PBL model and the advantages of this learning model in physics subjects which are used as the latest in this study. Through the study of literature from various sources it can be used as a measuring tool in achieving indicators of success in this subject and can find out what problems students face during physics learning activities, so teachers can apply this learning model to train the skills needed by students in this century.

**RESEARCH METHOD**

The type of research used is a literature study. The data analysis technique is carried out with a qualitative approach because it produces descriptive data, namely collecting data from 15 articles from various journals, both national and international scientific journals, that are pertinent to the issue PBL model in high school physics learning published in 2019-2022, then describe and examine the information. Moreover, make a conclusion to the collected data. According to Imran and Ahda (2022), in a literature review, researchers must identify theories systematically, find literature, then analyze information according to the specified topic. The following are the stages carried out in qualitative descriptive research.
RESULTS AND DISCUSSION

Results
From the study of the available literature, a summary of several national and international scientific journals from 2019 – 2022 regarding the Problem based learning model in high school physics learning is obtained below:

Table 1. Based on Physics in high school, the PBL Learning Model can be used

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prahani, BK, Rizki, IA, Citra, NF, Alhusni, HZ, &amp; Wibowo, FC (2022)</td>
<td>The PBL learning model assisted by 3D digital books is very valid and reliable for students.</td>
</tr>
<tr>
<td>Nasution, SWR, &amp; Siregar, LH (2022)</td>
<td>PBL Learning Model is viable in improving student learning result</td>
</tr>
</tbody>
</table>

https://ijoerar.net/index.php/ijoerar
Problem Based Learning Models in Senior High Schools: A Literature Review on Learning Physics

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aulia, IM (2022)</td>
<td>Student’s problem-solving abilities are influenced by the PBL learning model.</td>
</tr>
<tr>
<td>Asuri, AR, Suherman, A., &amp; Darman, DR (2021)</td>
<td>PBL learning model assisted by mind mapping has an effect on improving student problem solving.</td>
</tr>
<tr>
<td>Juliari, H., Setiawan, I., &amp; Putri, DH (2021)</td>
<td>PBL learning model assisted by crocodile physics has an effect on students' mastery of physics concepts</td>
</tr>
<tr>
<td>Ramadani, E., M. &amp; Nana. 2020</td>
<td>Phet-assisted PBL learning model can improve students' conceptual understanding</td>
</tr>
<tr>
<td>M. Marnita, M. Taufiq, I. Iskandar, R. Rahmi. 2020.</td>
<td>The PBL learning model has an effect on improving critical thinking skills.</td>
</tr>
<tr>
<td>Sitinjak, L., &amp; Banurea, JS (2022).</td>
<td>PBL learning model using macro flash has an effect on problem solving skills.</td>
</tr>
<tr>
<td>Ariswati, et al. 2018.</td>
<td>The PBL model affects the understanding of high school students' physics concepts.</td>
</tr>
<tr>
<td>Ayudha, C., F., H. &amp; Sestyarsih, W. 2021.</td>
<td>The PBL learning model can train students' problem solving skills</td>
</tr>
<tr>
<td>Desnita, D. (2021).</td>
<td>The PBL model is very influential on students' physics learning outcomes</td>
</tr>
<tr>
<td>Patabang, I., Yusuf, I., Allo, AY, &amp; Widyaningsih, SW (2020).</td>
<td>The application of the PBL model greatly influences students' critical thinking processes</td>
</tr>
</tbody>
</table>

Discussion
The PBL learning model is an educational model of a curriculum designed to achieve instructional goals. This model emphasizes and introduces students to a real problem they must solve. This model trains students' ability to solve a problem. During the process of teaching and learning activities, students will build the knowledge they have and improve their skills in solving a problem at hand. Subjects that are often faced with real problems in everyday life are physics subjects in high school. The essential factor in learning activities lies in the quality of the process, whose results can be seen from students' reactions during the learning process.

Based on the data obtained from several articles and national and international journals, the results are as in Table 1 above; In senior high school, the use of PBL learning
models in physics learning is very influential on student learning outcomes. In addition to increasing student learning outcomes, using this learning model can also improve some of the skills students need today, such as problem-solving skills, critical thinking, and mastery of physics concepts. Through this innovative learning model, students are more motivated to learn physics. This is because learning is student-centered, so students are taught to communicate and be able to construct their knowledge.

Some of the advantages of this PBL model are (1) Learning is more problem-oriented in real life, and students must seek as much information as possible to solve these problems so that students do not only study theory. (2) Can help students solve problems quickly because it is more flexible. (3) more efficient and easy for students because students can see directly the objects they are studying. (4) Can activate students in learning physics, (5) the learning process focuses more on student activities. (6) based on the constructivist paradigm, it can help students build their knowledge. (7) more exciting and make group learning activities because it comes from real-world context problems. (8) can overcome the boredom of student learning because learning is more student-centered. (9) can help students develop thinking skills to solve problems intellectually. (10) can overcome student boredom because students can set learning strategies (11) can make students more interactive, practical, and enthusiastic and make students motivated to learn. (12) is more meaningful, relevant, and contextual. (13) can increase students' interest in studying physics. (14) Students have a dominant role in solving a problem. (15) is more interesting because it focuses on students and the teacher only as a facilitator so that they can construct their knowledge.

The 15 articles show the benefits of the PBL model in physics subjects, one of which is that it can make students more interactive, practical and also enthusiastic in learning. This is because in the PBL model at the beginning of learning students are presented with contextual problems that they often encounter in everyday life. Thus, students will be addicted and motivated in learning the material. They will find their own solutions in solving these problems and the teacher becomes a facilitator. That way learning becomes effective and interactive.

The PBL learning model is carried out through 5 stages, including problem orientation, organizing learning, guiding group investigations, presenting the work, and evaluating the problem-solving process. Meanwhile, the characteristic of the PBL model is that the learning always begins with providing the context of the problem that is relevant to the real world. In Asuri’s et al. opinion (2021), which states that the PBL model require students carry out problem-based orientation, organize for learning, guide the experiences gained by students individually and in groups, present and analyze work and evaluate problem-solving processes, what they have done.

CONCLUSION

Fundamental findings: Based on the findings results that have been obtained and analyzed, problem-based learning models are very effectively applied to physics subjects in high school. Increased student learning outcomes, problem-solving skills, critical thinking, and understanding of physics concepts evidence this. This model can be utilized as a learning model in the classroom since students will be more dynamic and ready to take care of genuine issues in day to day existence.

Implication: From this research there are several implications, namely that teachers must act as facilitators and learning is centered on students so they can solve their own problems. Apart from that, teachers must also pay attention to the difficulties experienced by students.

Limitation:

https://ijoerar.net/index.php/ijoerar

000036 - 5
in this study only focuses on physics material in general. Therefore, the results of this research do not explain in detail the problems experienced by students in one of the materials. **Future Research:** so that the research can be even better, we suggest using the bibliometric analysis method to find out the distribution of article publications and to analyze the contribution of articles with a statistical approach.

**ACKNOWLEDGEMENTS**

Researchers express their deep gratitude to FMIPA Unesa for funding research in 2023.

**REFERENCES**


Problem Based Learning Models in Senior High Schools: A Literature Review on Learning Physics


Problem Based Learning Models in Senior High Schools: A Literature Review on Learning Physics


UU Nomor 0 Tahun 2003 Tentang Sistem Pendidikan Nasional.

Problem Based Learning Models in Senior High Schools: A Literature Review on Learning Physics


Rachmadaniz Audrey Kinasih
Universitas Negeri Surabaya
Jl. Lidah Wetan, Lidah Wetan, Kec. Lakarsantri, Surabaya, Jawa Timur 60213
Email: rachmadanizaudrey.20014@mhs.unesa.ac.id

Rosikhotul Ilmi
Universitas Negeri Surabaya
Jl. Lidah Wetan, Lidah Wetan, Kec. Lakarsantri, Surabaya, Jawa Timur 60213
Email: rosikhotulilmi.20015@mhs.unesa.ac.id

Nindy Carmelia Burnama
Universitas Negeri Surabaya
Jl. Lidah Wetan, Lidah Wetan, Kec. Lakarsantri, Surabaya, Jawa Timur 60213
Email: nindycarmelia.20023@mhs.unesa.ac.id

Anisa Rizky
Universitas Negeri Surabaya
Jl. Lidah Wetan, Lidah Wetan, Kec. Lakarsantri, Surabaya, Jawa Timur 60213
Email: anisa.21082@mhs.unesa.ac.id

*Dr. Binar Kurnia Prahani (Corresponding Author)
Department of Technology Education Faculty of Science and Technology, Universitas Negeri Surabaya
Jl. Lidah Wetan, Lidah Wetan, Kec. Lakarsantri, Surabaya, Jawa Timur 60213
Email: binarprahani@unesa.ac.id

Rizki Fitri Rahima Uulaa
Graduate Institute of Digital Learning and Education,
National Taiwan University of Science and Technology, No. 43 號, Section 4, Keelung Rd, Da’an District, Taipei City, 106, Taiwan
Email: m11011801@mail.ntust.edu.tw