Comparison of Top 100 Cited Research on Machine Learning and Deep Learning in The Last Twenty Years

Authors

  • Yeni Anistyasari Universitas Negeri Surabaya, Indonesia
  • Binar Kurnia Prahani Universitas Negeri Surabaya, Indonesia
  • Mila Candra Pristianti Universitas Negeri Surabaya, Indonesia
  • Tan Amelia Universitas Dinamika, Indonesia
  • Paken Pandingangan Universitas Terbuka, Indonesia
  • Rizki Fitri Rahima Uulaa National Taiwan University of Science and Technology, Taiwan
  • Mohammad Walid Rasuliy International Islamic University of Islamabad, Pakistan

DOI:

https://doi.org/10.56707/ijoerar.v1i1.3

Abstract

Objective: The aim is to compare the top 100 research related to machine learning (ML) and deep learning (DL) during 2002-2021 using bibliometric analysis. Method: The data were obtained from Scopus. The data taken in this research were selected from 100 articles with the highest citation in the range from 2002 to 2021. Bibliometric analysis is used in this research. Data from Scopus is exported in the form of .csv form which is processed using Ms. Excel and form of .ris which is processed using VOSviewer.  Results:  The results showed that the trend of ML and DL increased every year. The most widely published document types in ML are articles, while DL is in the form of conference papers. The highest year-wise distribution of publishing ML and DL occurred in 2017. ML advantages are in terms of requires less data and take less time to train, while the DL advantages in terms of higher accuracy than ML, available to tuned in various different ways. Novelty: This research being able to provide an overview for future researchers regarding the trend of ML and DL topics so that the resulting paper can provide various benefits for the coming year. In addition, it can provide broader knowledge about ML and DL itself. Further research can be carried out more intensively using data based on the Web of Science, in addition to the Scopus database.

References

Alberts, B. (2022). Why science education is more important than most scientists think. FEBS letters, 596(2), 149-159. https://doi.org/10.1002/1873-3468.14272

Alghamdi, M. I. (2020). Survey on applications of deep learning and machine learning techniques for cyber security. International Journal of Interactive Mobile Technologies, 14(16), 211-223. https://doi.org/10.3991/ijim.v14i16.16953

Ali, J., Jusoh, A., Idris, N., Abbas, A. F., & Alsharif, A. H. (2021). Nine years of mobile healthcare research: A bibliometric analysis. International Journal of Online & Biomedical Engineering, 17(10). https://doi.org/10.3991/ijoe.v17i10.25243

Belmonte, J. L., Segura-Robles, A., Moreno-Guerrero, A. J., & Parra-González, M. E. (2020). Machine learning and big data in the impact literature: A bibliometric review with scientific mapping in web of science. Symmetry, 12(4), 495. https://doi.org/10.3390/sym12040495

Bharvi, D., Garg, K., & Bali, A. (2003). Scientometrics of the international journal Scientometrics. Scientometrics, 56(1), 81-93. https://doi.org/10.1023/A:1021950607895

Bottou, L., Curtis, F. E., & Nocedal, J. (2018). Optimization methods for large-scale machine learning. SIAM review, 60(2), 223-311. https://doi.org/10.1137/16M1080173

Calabuig-Moreno, F., González-Serrano, M. H., Fombona, J., & Garcia-Tascon, M. (2020). The emergence of technology in physical education: A general bibliometric analysis with a focus on virtual and augmented reality. Sustainability, 12(7), 2728. https://doi.org/10.3390/su12072728

Chen, T., & Tong, Y. (2019). Federated machine learning: concept and applications. ACM Journals Transactions on Intelligent System and Technology, 10(2), 1-19. https://doi.org/10.1145/3298981

Chhapola, V., Tiwari, S., Deepthi, B., & Kanwal, S. K. (2018). Citation classics in pediatrics: A bibliometric analysis. World Journal of Pediatrics, 14, 607-614. https://doi.org/10.1007/s12519-018-0146-6

Conde, A., Arruarte, A., Larrañaga, M., & Elorriaga, J. A. (2020). How can wikipedia be used to support the process of automatically building multilingual domain modules? a case study. Information Processing & Management, 57(4), 102232. https://doi.org/10.1016/j.ipm.2020.102232

Das, P. K. (2013). Journal of informetrics: A bibliometric profile. DESIDOC Journal of Library & Information Technology,, 33(3), 243-252. https://doi.org/10.14429/djlit.33.3.4610

Eck, N. J. V., & Waltman, L. (2013). VOSviewer manual. Leiden: Univeristeit Leiden, 1(1), 1-53.

Eck, N. J. V., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111, 1053-1070. https://doi.org/10.1007/s11192-017-2300-7

El Guabassi, I., Bousalem, Z., Marah, R., & Qazdar, A. (2021). Comparative analysis of supervised machine learning algorithms to build a predictive model for evaluating students’ performance. International Journal of Online and Biomedical Engineering, 17(2), 90-105. https://doi.org/10.3991/ijoe.v17i02.20025

Garg, K. C., & Singh, R. K. (2022). A bibliometric study of papers published in library and information science research during 1994-2020. DESIDOC Journal of Library & Information Technology, 42(1). https://doi.org/10.14429/djlit.42.1.17480

Kevin, W. U. A., Zainab, A. N., & Anuar, N. B. (2009). Bibliometric studies on single journals: A review. Malaysian Journal of Library & Information Science, 14(1), 17-55.

Korotcov, A., Tkachenko, V., Russo, D. P., & Ekins, S. (2017). Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Molecular pharmaceutics, 14(12), 4462-4475. https://doi.org/10.1021/acs.molpharmaceut.7b00578

Lakin, J. M., & Wai, J. (2022). Developing student aptitudes as an important goal of education. Gifted Child Quarterly, 66(2), 95-97. https://doi.org/10.1177/00169862211039543

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2018). Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. The International journal of robotics research, 37(4-5), 421-436. https://doi.org/10.1177/0278364917710318

Li, Y., Xu, Z., Wang, X., & Wang, X. (2020). A bibliometric analysis on deep learning during 2007–2019. International Journal of Machine Learning and Cybernetics, 11(2), 2807-2826. https://doi.org/10.1007/s13042-020-01152-0

Licardo, M., & Leite, L. O. (2022). Collaboration with immigrant parents in early childhood education in Slovenia: How important are environmental conditions and skills of teachers?. Cogent Education, 9(1), 2034392.

https://doi.org/10.1080/2331186X.2022.2034392

Limaymanta, C., Apaza-Tapia, L., Vidal, E., & Gregorio-Chaviano, O. (2021). Flipped classroom in higher education: A bibliometric analysis and proposal of a framework for its implementation. International Journal of Emerging Technologies in Learning (iJET), 16(9), 133-149. https://doi.org/10.3991/ijet.v16i09.21267

Liu, Z-Y. (2020). Online technologies in STEM education”. International Journal of Emerging Technologies in Learning, 15(15), 21-31. https://doi.org/10.3991/ijet.v15i15.14677

McNicholas, P. J., Floyd, R. G., Fennimore, L. E., & Fitzpatrick, S. A. (2022). Determining journal article citation classics in school psychology: An updated bibliometric analysis using Google Scholar, Scopus, and Web of Science. Journal of school psychology, 90, 94-113. https://doi.org/10.1016/j.jsp.2021.11.001

Mukherjee, B. (2009). Journal of the american society for information science and technology (2000—2007): A bibliometric study. IFLA journal, 35(4), 341-358. https://doi.org/10.1177/0340035209352429

Mustapha, I., Van, N. T., Shahverdi, M., Qureshi, M. I., & Khan, N. (2021). Effectiveness of digital technology in education during covid-19 pandemic: A bibliometric analysis. International Journal of Interactive Mobile Technologies, 15(8). https://doi.org/10.3991/ijim.v15i08.20415

National Center for Education Statistics. (2020). Digest of Education Statistics. NCES 2017-094.

Hashim, K. F., Rashid, A., & Atalla, S. (2018). Social media for teaching and learning within higher education institution: A bibliometric analysis of the literature (2008-2018). International Journal of Interactive Mobile Technologies, 12(7). https://doi.org/10.3991/ijim.v12i7.9634

Hung, I. C., Yang, X. J., Fang, W. C., Hwang, G. J., & Chen, N. S. (2014). A context-aware video prompt approach to improving students' in-field reflection levels. Computers & Education, 70, 80-91. https://doi.org/10.1016/j.compedu.2013.08.007

Ouatik, F., Erritali, M., Ouatik, F., & Jourhmane, M. (2021). students' orientation using machine learning and big data. International Journal of Online and Biomedical Engineering, 17(1), 111-118. https://doi.org/10.3991/ijoe.v17i01.18037

Pande, M., & Mulay, P. (2020). Bibliometric survey of quantum machine learning. Science & Technology Libraries, 39(4), 369-382. https://doi.org/10.1080/0194262X.2020.1776193

Parmar, S., Siwach, A. K., & Kumar, A. (2020). Fifty years research output in oral submucous fibrosis: A bibliometric analysis of publications from 1967 to 2016. DESIDOC Journal of Library & Information Technology, 40(2). https://doi.org/10.14429/djlit.40.02.14727

Patil, N., & Lihitkar, S. (2018). Fifty two years of Library Herald (1958 to 2014). Library Herald, 56(2), 209-232.

Rastegarmoghadam, M., & Ziarati, K. (2017). Improved modeling of intelligent tutoring systems using ant colony optimization. Education and Information Technologies, 22, 1067-1087. https://doi.org/10.1007/s10639-016-9472-2

Sabirova, F., & Kudinov, s. Professional competences in STEM education. (2020). International Journal of Emerging Technologies in Learning, 15(14), 179-192. https://doi.org/10.3991/ijet.v15i14.13527

Saha, A., Rathore, S. S., Sharma, S., & Samanta, D. (2019). Analyzing the difference between deep learning and machine learning features of EEG signal using clustering techniques. In 2019 IEEE Region 10 Symposium (TENSYMP), 660-664.

https://doi.org/10.1109/TENSYMP46218.2019.8971358

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of big data, 6(1), 1-48. ttps://doi.org/10.1186/s40537-019-0197-0

Shubina, I., Plakhotnik, O., & Plakhotnik, O. (2021). Professional education and technology usage for establishing methodological competence among future professors: bibliometric analysis. International Journal of Emerging Technologies in Learning (iJET), 16(19), 235-250. https://doi.org/10.3991/ijet.v16i19.24361

Small, H. (1999). Visualizing science by citation mapping. Journal of the American society for Information Science, 50(9), 799-813.

https://doi.org/10.1002/(SICI)1097-4571(1999)50:9<799::AID-ASI9>3.0.CO;2-G

Sobral, S. R. (2021). Two decades of research in e-learning: A deep bibliometric analysis. International Journal of Information and Education Technology, 11(9). https://doi.org/10.18178/ijiet.2021.11.9.1541

Wang, Q., Zhou, W., Yang, L., & Huang, K. (2022). Comparison between conventional and deep learning-based surrogate models in predicting convective heat transfer performance of U-bend channels. Energy and AI, 8, 100140. https://doi.org/10.1016/j.egyai.2022.100140

Zahour, O., Benlahmar, E. H., Eddaouim, A., & Hourrane, O. (2020). A comparative study of machine learning methods for automatic classification of academic and vocational guidance questions. International Journal of Interactive Mobile Technologies (iJIM), 14(8), 43. https://doi.org/10.3991/ijim.v14i08.13005

Zhang, J. Z., Srivastava, P. R., Sharma, D., & Eachempati, P. (2021). Big data analytics and machine learning: A retrospective overview and bibliometric analysis. Expert Systems with Applications, 184, 115561. https://doi.org/10.1016/j.eswa.2021.115561

Zhang, L., Carter Jr, R. A., Qian, X., Yang, S., Rujimora, J., & Wen, S. (2022). Academia's responses to crisis: A bibliometric analysis of literature on online learning in higher education during covid‐19. British Journal of Educational Technology, 53(3), 620-646. https://doi.org/10.1111/bjet.13191

Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems, 30(11), 3212-3232. ttps://doi.org/10.1109/TNNLS.2018.2876865

Zuo, C., Qian, J., Feng, S., Yin, W., Fan, P., Han, J., Qian, K., & Chen, Q. (2022). Deep learning in optical metrology: A review. Light: Science & Applications, 11(39), 1-59. https://doi.org/10.1038/s41377-022-00714-x

Downloads

Published

2023-03-31

How to Cite

Anistyasari, Y., Prahani, B. K., Pristianti, M. C., Amelia, T., Pandingangan, P., Uulaa, R. F. R., & Rasuliy, M. W. (2023). Comparison of Top 100 Cited Research on Machine Learning and Deep Learning in The Last Twenty Years. International Journal of Emerging Research and Review, 1(1), 000003. https://doi.org/10.56707/ijoerar.v1i1.3

Issue

Section

Articles